

Tài liệu này được dịch sang tiếng việt bởi:

Xem thêm các tài liệu đã dịch sang tiếng Việt của chúng tôi tại:

http://mientayvn.com/Tai_lieu_da_dich.html

Dịch tài liệu của bạn:

http://mientayvn.com/Tim_hieu_ve_dich_vu_bang_cach_doc.html

Tìm kiếm bản gốc tại đây:

https://drive.google.com/drive/folders/1Zjz7DM7W4iV1qojox5kc_UUiNpx2qSH <u>R?usp=sharing</u>

YTTRIUM,STRONTIUMPEROVSKITEBaTiO3PHADOPEDBaTiO3PEROVSKITETAPYTTRIUM,

AS MATERIAL FOR GAS	STRONTIUM UNG DUNG
SENSOR	TRONG CẢM BIÊN KHÍ
ABSTRACT	TÓM TẮT <mark>checked</mark> 2
New gas sensors of Yttrium,	Bài báo nghiên cứu loại cảm
Strontium- doped BaTiO3,	biến khí mới, oxit perovskite
perovskite oxides were studied.	BaTiO3 pha tạp Yttrium,
The n-type semiconducting	Strontium. Chúng tôi chế tạo
BaTiO3 ceramics compounds:	hợp chất gốm bán dẫn
Ba1-x-ySrxYyTiO3 ($x = 0.04$ -	BaTiO3:
0.07; y = 0.004) were prepared by	Ba1-x-ySrxYyTiO3 (x= 0.04
conventional ceramic technology.	-0.07; y = 0.004) bằng công
The electrical properties of	nghê gốm thông thường. Sau
produced samples (carrier type,	đó nghiên cứu các tính chất
its density, mobility) were	điện của các mẫu được chế
studied. The sensitivity of the	tạo bao gồm loại hạt tải, khối
ceramics samples to CO gas in	lượng riêng, độ linh động.
the concentration of 0.5% at, the	Đồng thời chúng tôi cũng
temperature of phase transition	nghiên cứu độ nhạy của các
and middle temperature region	mẫu gốm với khí CO ở nồng
was also studied. The strong	độ 0.5% at, nhiệt độ dịch
influence of reducing CO gas on	chuyển pha và <mark>vùng nhiệt độ</mark>
resistivity of the ceramic samples	giữa (trung gian). Kết quả
above metallic to semiconducting	cho thấy khí khử CO có ảnh
transition (MST) temperature was	hưởng mạnh đến độ nhạy của
found. It's able to detect CO gas	các mẫu gốm ở trên nhiệt độ
in the concentration range of	dịch chuyển kim loại-bán dẫn
0.1% - 1.5% at middle	(MST). Nó có thể phát hiện
temperature region (100o-	khí CO ở nồng độ 0.1% -
200oC). The application principle	1.5% ở <mark>vùng nhiệt độ giữa</mark>
is based on the extreme reactivity	(trung gian) (100o-200oC).
of grain oxygen atoms just above	Nguyên lý hoạt động dựa trên
the phase transition temperature.	độ phản ứng cực mạnh của
The studying positive	các nguyên tử oxy <mark>dạng hạt</mark>
thermoresistive coefficient (PTC)	ngay trên nhiệt độ dịch
ceramics can be used as CO gas	chuyên pha. Gồm có hệ số
sensors because of high stability	nhiệt điện trở dương (PTC)
in thermal, atmospheres and low	đang nghiên cứu có thê được
cost.	sử dụng làm cảm biên khí CO
	do có độ ôn định cao trong
	nhiệt độ, môi trường và giá

	thành thâp.
1. INTRODUCTION	
Some perovskite oxide ceramics	
have been used as gas sensor	
materials for the last decade. The	
gas sensor ceramics could be	
classified into two groups: the	
electrochemical ceramics and	
semiconducting ceramics [1]. The	
semiconducting perovskite oxide	
ceramics were widely used in the	
detection of reducing gases, such	
as: CO [2-4], H2S, Cl2, NO2 [5],	
C2H2, C2H4, C3H6 [7], O2 [9-	
11]. Among these gases, CO is	
the most interesting because it	
can damage the human body [1].	
So, the metal oxide	
semiconductors have been studied	
for detecting CO, such as:	
BaSnO3, HfO2, TiO2, In2O3 [1].	
Some authors have been studying	
to reduce the working	
temperature of materials by	
means of promotion of the	
activity of CO reaction on the	
surface [12, 13] and some of them	
CO gas sensor by means of new	
application of doped BaTiO3	
with PTC effect [14]. Recently.	
the PTCR ceramics have	
developed to be a new	
multifunctional semiconducting	
ferroelectric ceramics [8]. They	
are widely used in industries and	
civilian as a control device	
because of high stability in	
thermal, atmospheres and low	
cost [1]. The semiconducting	

BaTiO3- based ceramics are considered to be good adsorbing specific material as it has selectivity to CO, CO2... [6]. The purpose of this paper was an the investigation electrical properties of prepared samples carrier nature. (electrical its CO density. mobility...), influence on conductivity of the PTC ceramics. The influence of temperature on gas sensitivity of the n-type semiconducting

Ba1-x- ySrxYyTiO3 (x = 0.04 - 0.07; y = 0.004) ceramics compounds for concentrations of 0.1%-1.5% CO gas was studied.

2. **EXPERIMENTS** Semiconducting BaTiO3 material was synthesized by conventional ceramic semiconducting technology with initial materials: BaCO3 (99,0%), Y2O3(99,99%), MnCO3(96,0%), TiO2(99,0%), prepared SrCO3(99,0%). The perovskite powders were pressed into pellets of 1 mm thickness an d 8 mm in diameter at high pellets pressure. The were sintered in air at varied temperatures from 1200oC to 1400oC for 4 hours. Both the surfaces of some samples were coated with Ag-Zn alloy by sputtering cathode method to form the electrodes. The structure of sintered bodies was analyzed by X-ray diffractometer D-5005 (Brucker). The Hall measurements were carried out in

the presence of a magnetic field up to 1.3 T. The relation between the Hall voltage and the current, the Hall mobility, the majority carrier density, the resistivity and the magnetic flux density of the samples were studied by examining the Hall effect in air at room temperature, and in CO environment.

The high temperature dependence of the sample resistance was measured using two- probe method in concentration of 0.5% CO gas and in air. To examine the sensitivity of the ceramics samples to CO, the prepared per ovskite powder s wer e milled and annealed for 10 hours then the samples were coated with Ag-Zn. The measurements were performed in the tubular flow quartzglass chamber with thermocouple, first in air and then successively under the reducing CO sensitivitygas. The temperature relation for concentration 0.5% of CO gas in ceramics was defined by following equation:

Where \Box gas and \Box air are resistivities in 0,5 vol% CO and air respectively.

3. RESULT AND DISCUSSION

Fig. 1 shows the X-ray diffraction pattern for the sample. It is seen from fig. 1 that the doping sample

has the same structure as BaTiO3, it indicates that the sample is single- phase. At room temperature the sample has a tetragonal structure.

Fig. 2 shows the relation between Hall voltages and the applied current. It is seen that, when the current increased, the Hall voltage increased non-linearly in constant magnetic field. The Hall resistance of the sample can be determined from the Hall voltages and the applied currents. The Hall resistance of the sample was about 6 k \square in air and a little smaller in CO gas at room temperature. The resistance is rather high comparing with the standard resistance.

The relation between the bulk carrier density and magnetic flux density in air was shown in Fig. 3. From this figure we can see that, the bulk carrier density of the sample in air at room temperature is low order of \Box 1015.cm-3, the maximum of carrier density is \Box 5.1015.cm-3.

This is typical density of carriers in PTC semiconducting materials.

Fig. 3: Bulk carrier density versus magnetic field strength in air.

Fig. 1: X- ray diffraction pattern of samples Fig. 4 shows the Hall mobility calculated from sheet carrier

density and the sheet resistivity. The Hall mobility is given by the product of the Hall constant and the conductivity for the given sample. In general, the greater the carrier mobility in the sample, the greater the Hall mobility. The carrier mobility depends on the applied magnetic field. From this figure, we can see that, the Hall mobility decreases with increasing of applied magnetic field strength.

Fig. 2: Dependence of the Hall voltage on applied current through the sample 30

Fig. 4: The Hall mobility versus Magnetic field

Studying the Hall effect, we found that the electrical majority carriers are electrons and materials presented n-type semiconductor. The Hall mobility \Box H \Box 70 (cm2/Vs) at room temperature and in zero magnetic field. In the 0,5 vol.% concentration of CO gas, the carrier density increases a little because of the oxygen adsorption on the grain surface.

It was seen in Fig. 5 and Fig.6 the resistivity - temperature characteristics of the doping BaTiO3 perovskite (Ba0.936Sr0.07Y0.004TiO3) sample in air and in CO gas. The

reduction of sample's resistivity in CO environment is observed clearly.

Fig. 5. Resistance- temperature in air and CO gas for sample above Tc to 2000C

The change of resistivity is sensitive especially above the temperature Curie of ferroelectric-paraelectric phase transition (TC~ 125oC) in the interval from 125oC to 170oC (see Fig. 5). The CO gas sensitivity of the sample is expressed via the ratio of the resistivities and plotted in Fig. 6. We note that the sensitivity of the sample to the CO gas strongly depends on temperature. It has the maximum \Box 20% near 130oC and reduces to

Fig. 6. Resistance- temperature in air and CO gas for sample Ba0.946Sr0.06Y0.004TiO3

5% around 1600C. Figure 7 resistivity shows the temperature characteristics of BaTiO3 another doping (Ba0.946Sr0.06Y0.004TiO3) in air and in CO, the temperature in this examination was above the Tc (\Box 1300C). We can see it's the sample: same the to Ba0.936Sr0.07Y0.004TiO3. The reduction of the sample's resistivity in CO environment is also observed clearly in the interval from 125oC to 170oC.

The PTC effect is stipulated by specific structure of a surface of a grain formed under special technological conditions. The substitution of Ba2+ ions in perovskite lattice by Y3+ causes conductivity rises of the doped material. It could be explained by the following equation in Kroeger Vink notations [14]:

On the grain surface, at low temperature the adsorbed oxygen may exist in not charged forms of O2(ads) or O (ads), or the lattice ternary atoms of oxygen on the surface may be present in the form of O0. The raise of prior temperature to the beginning of Tc promotes an establishment of the surface with adsorbed oxygen [14]:

Their reactions with CO molecules on the grain surfaces by following equations:

Fig. 6. Sensitivity-temperature in PTCR ceramics: Ba0.936Sr0.07Y0.004TiO3 These reactions happen when the molecules CO diffuse in intergranular space. We consider that, the influence of small concentration of CO gas on conductivity of materials Ba1-xySrxYyTiO3. (x = 0.04 - 0.07; y = 0.004) can be explained by

equations (1)-(2).

4. CONCLUSION

The sensing mechanism for the adsorption between CO gas and PTC ceramics are based on the reactivity of grain oxygen atoms above MST. The reduction of resistivity of PTC ceramic above MST in CO gas invironment is caused by the increasing of carrier concentration due to CO absorption. The n-type semiconducting PTC ceramics doped with strontium and yttrium is a perspective material for creation gas sensors.

